

Colloidal Activated Carbon Used to Enhance Natural Attenuation of PFAS at Airports Worldwide: A Multiple Site Review

Ryan E. Moore Senior District Manager and PFAS Program Manager REGENESIS

Presentation Overview

- Enhanced Attenuation of PFAS
- Effectiveness of CAC Treatment

Case Studies

- Ever-changing Remediation Goals
- Design & Implementation Process
- Long-term Data

PFAS Sources/Plume System

Plume Management Solution: Enhanced Attenuation

"The result of applying an enhancement that **sustainably** manipulates a natural attenuation process, leading to an increased reduction in mass flux of contaminants."

Plume Management Solution: Enhanced Attenuation

Common Questions:

Without contaminant destruction, how does this fit with remediation?

re-me-di-a-tion

/rə mēdē aSH(ə)n/

Noun

A Process used to reduce or eliminate the risk for humans and the environment that may result from exposure to harmful chemicals

Source: ITRC

Eliminating Risk

Bisk = Hazard x Exposure

US EPA: Natural attenuation processes may reduce the potential risk posed by site contamination in three ways:

- 1. Transformation of contaminants to a less toxic form
- 2. Reduction of contaminant concentrations
- 3. Reduction of contaminant mobility and bioavailability

Colloidal activated carbon adsorbs PFAS *in situ*, reducing mobility and exposure

U.S. EPA. Use of Monitored Natural Attenuation for Inorganic Contaminants at Superfund Sites, Directive 9283.1-36. Published online 2015. Newell CJ, et al. Monitored Natural Attenuation to Manage PFAS Impacts to Groundwater: Scientific Basis. Groundwater Monitoring & Remediation. 2021;41(4):76-89. Newell CJ, et al. Monitored natural attenuation to manage PFAS impacts to groundwater: Potential guidelines. Remediation Journal. 2021;31(4):7-17. ER21-5198. Accessed December 15, 2021. https://www.serdp-estcp.org/Program-Areas/Environmental-Restoration/ER21-5198/ER21-5198.

DOI: 10.1002/rem.21697

RESEARCH ARTICLE

Monitored natural attenuation to manage PFAS impacts to groundwater: Potential guidelines

Charles J. Newell¹ | David T. Adamson¹ Blossom N. Nzeribe² | John A. Connor¹ Poonam R. Kulkarni¹ | Jovan Popovic³ | Hans F. Stroo⁴

¹GSI Environmental Inc., Houston, Texas, USA ²GSI Environmental Inc., Austin, Texas, USA ³Naval Facilities Engineering and Expeditionary Wartare Center, Port Hueneme, California, USA ⁵Stroo Consulting, LLC, Ashtand, Oregon, USA

Correspondence Charles J. Newell, GSI Environmental Inc., 2211 Norfolk Suite 1000, Houston, TX 770027 USA Entail: doewell@gsi-incl.com

Abstract

Practical guidelines based on a three-tiered lines of evidence (LOEs) approach have been developed for evaluating monitored natural attenuation (MNA) at per- and polyfluoroalkyl substances (PEAS) impacted groundwater sites using the scientific basis described in a companion paper (Newell et al., 2021). The three-tiered approach applies direct measurements and indirect measurements, calculations, and more complex field and modeling methods to assess PEAS retention in the subsurface. Data requirements to assess the LOEs for quantifying retention in both the vadose and saturated zones are identified, as are 10 key PEAS MNA questions and 10 tools that can be applied to address them. Finally, a list of potential methods to enhance PEAS MNA is provided for sites where MNA alone may not effectively manage the PEAS plumes. Overall, a practical framework for evaluating PEAS MNA that can result in more efficient, reliable management of some PEAS sites is provided.

1 | INTRODUCTION

This paper builds upon a companion paper that described the scientific basis for using monitored natural attenuation (MINA) to managing perand polyfluoroalikyl substances (PFAS) impacts to groundwater (Newell interphase partitioning, and, potentially, self-assembly phenomena) and matrix diffusion into low-permeability media. Many of the PFAS retention processes are nondestructive and reversible, so that the key atternation benefit of these processes is "peak shaving" where the original peak mass discharge of PFAS from the source is attenuated to lower,

WILEY

Colloidal Activated Carbon

- Form of Activated Carbon
- Particle Sizes 1 2 μ m
- Suspended as a colloid in a polymer solution
- Distributes Widely Under Low Pressure
- Provides extremely fast sorption sites
- Converts underlying geology into purifying filter

500

400

300

200

100

Treatment of Flux Zones and Control of Back Diffusion & COC Migration

Colloidal Activated Carbon

Optimized PFAS sorption

- Smaller particles provide more exterior surface
- Shorter distance to all the sorption sites compared to PAC or GAC
- Results in rapid and highly efficient sorption

Granular Activated Carbon (>500µm)

Colloidal Activated Carbon (1-2µm)

- Limited surface area exposed to solute
- Slow, incomplete sorption
- More rapid and complete use of sorption sites
- Faster more effective sorption of PFAS

Source: Xiao, Ulrich, Chen & Higgins. Environ. Sci. Technol. 2017, 51, 6342-6351

CAC Installation

5 Year Research and Development Process

The R&D process was exhaustive, spanning five years and resulting in the issuance of seven patents for the innovations that make PlumeStop possible.

Current Research and Development Efforts

- Field Demonstration of CAC for In Situ Sequestration of PFAS
 - NESDI project 569 (APTIM)

- Validation of CAC for Preventing the Migration of PFAS
 - Principal Investigator: Paul Hatzinger

- An Investigation of Factors Affecting In Situ PFAS Immobilization by Activated Carbon
 - Principal Investigator: Dr. Neil Thompson, University of Waterloo

 Additional Support of Domestic and International Research Projects in Academia

How does CAC distribute in the subsurface?

REGENESIS

PlumeStop

Reagent Distribution Research

CAC vs PAC Distribution Study

- 4 sites, two 10x10m test cells each – 8 plots
- ~65 soil samples per plot to find AC (520 total)

McGregor, R.(2020) Distribution of Colloidal and Powdered Activated Carbon for the in Situ Treatment of Groundwater. Journal of Water Resource and Protection, 12, 1001-1018.

Reagent Distribution Research

Accumulation of Carbon within the Well Sand-pack?

PAC:

- TOC at 1.65 weight percent
- +224% mean TOC of the surrounding targeted injection zone

CAC:

- TOC at 0.65 weight percent
- -35% mean TOC of the surrounding targeted injection zone

How Effective is CAC for in situ PFAS treatment?

DOI: 10.1002/rem.21741

RESEARCH ARTICLE

Longevity of colloidal activated carbon for in situ PFAS remediation at AFFF-contaminated airport sites

Grant R. Carey¹ Claire Woodfield³ Seyfollah G. Hakimabadi² | Mantake Singh³ Paul J. Van Geel³ | Anh Le-Tuan Pham²

Rick McGregor⁴

WILEY

¹Porewater Solutions, Ottawa, Ontario, Canada

²Department of Civil and Environmental Engineering, University of Waterloo, Ontario, Waterloo, Canada

³Department of Civil and Environmental Engineering, Carleton University, Ontario, Ottawa, Canada

⁴In Situ Remediation Services Ltd., St. George, Ontario, Canada

Correspondence

Grant R. Carey, Porewater Solutions, 2958 Barlow Crescent, Ottawa, ON KOA 1TO, Canada. Email: gcarey@porewater.com

information ter Solutions, Ontario Centers for nce, and Natural Sciences and ering Research Council

Grant Carey

Abstract

A review of state per- and polyfluoroalkyl substances (PFAS) guidelines indicates that four long-chain PFAS (perfluorooctanesulfonic acid [PFOS] and perfluorooctanoic acid [PFOA] followed by perfluorohexanesulfonic acid [PFHxS] and perfluorononanoic acid [PFNA]) are the most frequently regulated PFAS compounds. Analysis of 17 field-scale studies of colloidal activated carbon (CAC) injection at PFAS sites indicates that in situ CAC injection has been generally successful for both short- and long-chain PFAS in the short-term (0.3-6 years), even in the presence of low levels of organic co-contaminants. Freundlich isotherms were determined under competitive sorption conditions using a groundwater sample from an aqueous filmforming foam (AFFF)-impacted site. The median concentrations for these PFAS of interest at 96 AFFF-impacted sites were used to estimate influent concentrations for a CAC longevity model sensitivity analysis. CAC longevity estimates were shown to be insensitive to a wide range of potential cleanup criteria based on modeled conditions. PFOS had the greatest longevity even though PFOS is present at higher concentrations than the other species because the CAC sorption affinity for PFOS is considerably higher than PFOA and PFHxS. Longevity estimates were directly proportional to the CAC fraction in soil and the Freundlich $K_{\rm fr}$ and were inversely proportional to the influent concentration and average groundwater velocity.

Independent assessment of PFAS CAC applications at Airport Sites

- PoreWater Solutions .
- InSitu Remediation Services Ltd .
- University of Waterloo .
- University of Toronto .
- Treatment Expected to last decades
- Source reductions extend longevity

Volume 33. No. 1 Winter 2022

Paper Highlights

- Airports PFAS Sites (96 reviewed)
 - 82% dominated by PFOS and PFHxS (Grayling)
 - Preferentially sorbed to AC
- 17 Field Sites show Success with Co-Contaminants PHC/VOC (Grayling)
- In Situ CAC has much Longer
 Breakthrough Time vs. ex situ AC
 - particle size and extended retention
- Longevity Impacted Mostly by Incoming Mass Flux

Field lite ID	Reference	Maximum detected PFAS groundwater concentrations before CAC injection(µg/L)	Maximum concentrations of co-contaminants before CAC injection (µg/L)	Soil type	Measuredfcsc	Description of monitoring network within the CAC adsorption zone	No. of postinjection monitoring events	Postinjectionmo- nitoring events (days after injection)	Summary of postinjection PFAS monitoring results
1	McGregor (2018), Carey et al. (2019)	PFOA: 3.26 and PFOS: 1.45	BTEX: 300 GRO: 2000 DRO: 3500	Silty sand	0.02%	Four monitoring wells	m	79, 175, 298, 350, 449, 533, 689, 1050, 1415, 1780, 2145	No detections of PFAS in the CAC idsorption zone over first 10 postinjection monitoring events (5 years), with the exception of a single well with low detections of PFOS and PFUnA at 1 = 533 days (40 and 20 ng/L, respectively). First five monitoring events included lab analysis for only PFOS and PFOA; lab analysis in the last six events included a full suite of PFAAs, in Event 11 (6 years), the detection limits were lowered to about 1 ng/L, and several PFAS were observed slightly above the new detection limits in this last event.
2	McGregor, 2020a	PFBA: 6,2: PFPeA: 24,0: PFHxA: 16.1; PFHpA: 6.08: PFOA: 0.45; and PFNA: 0.14	Petroleum hydrocarbons 3500	Fine- grain- ed sand	0.08%	Three monitoring wells and one well multilevel with three screened intervals	5	92, 184, 278, 366, 549	No detections of PFAS in the CAC adsorption zone over all five postinilection monitoring events (1.5 years).
3	McGregor and Benevenut- o (2021)	PFBA: 6.405: PFPeA: 24.0; PFHxA: 15.74; PFHpA: 7.25; PFOA: 0.91; PFNA: 0.165; and PFOS: 2.105	Total BTEX: 6160	Silty sand and sand	0.76%	Three multilevel wells (two wells with seven screened intervals, and one well with three screened intervals)	1	182. 273, 366	No detections of PFAS in the CAC idsorption zone în unconsolidated media over ali three postinjection (monitoring events (1 year).
4	McGregor and Zhao (2021)	PFBA: 0.795; PFPeA: 12.8; PFHxA: 3.24; PFOA: 0.95; and	TCE: 985 cis-1,2-DCE: 258 vinyl chloride: 54	Silty sand	0.07%	Three monitoring wells	5	122. 248. 362. 547. 724	No detections of PFAS in the CAC adsorption zone over all five postinjection monitoring events (2

polyfluoroalkyl substances; PFBA, perfluorobutanoic acid; PFHpA, perfluoroheptanoic acid; PFHxA, perfluorohexanesulfonic acid; PFNA, perfluorononanoic acid; PFOA, perfluoroctanoic acid; PFOA

Summary REGENESIS AIRPORT Projects

		PFOA/PFOS max (ug/L)	Results
MA airport	barrier		Met remediation Goals in 3 months
Camp Grayling Air Field	barrier	ND/.06	Met Remediation Goals, maintained 4+ years
MI airport	barrier	0.024/.511	Met Remediation Goals in 3 months
UK Int airport	barrier	.316/.014	Met remediation goals
UK commercial airport	barrier	5.66/.62	Met Remediation Goals, project under Plume Shield Warranty
Fairbanks AK	barrier	.24/.28	Met Remediation Goals, maintained 2+ years
Federal Facility Airport	grid		Met Remediation Goals
Ontario	barrier	0.042/1.5	downgradient wells trending downward 50% reduction observed, does not have near barrier well
NY airport	barrier	0.172/.823	waiting for data

Source Zone Treatment

Plume Management Solution: Source Zones

What is the Goal

- Manage soils in place
- Promote ENA of groundwater plume
- Long-term reduction in PFAS mass discharge

Achieving the goal by

- Leachability reduction of vadose soils
- Infiltration reduction of vadose soils
- Prevent residual PFAS moving downward with horizontal barriers

Source Application Approaches

Source Treatment Application Methods

- Reduce leachability
- Reduce permeability (infiltration)

Horizontal Barrier

- Reduce leachability
- Immobilize PFAS mass migrating downward

Groundwater Treatment

• Direct injection

Combining Source and Plume Treatment

Combined Soil and Groundwater Source Treatment

Case Study #1

Background

- Founded 1913
- 147,000 Acres
- Largest National Guard Training Center in the Country
- Home to Grayling Army Airfield (900 Acres)
- Contaminant Release History:
 - Diesel, PCE/TCE, PFAS
- Remediation History:
 - Pump and Treat, Air Sparging/SVE

Case Study: Pilot Test

Former Bulk Storage Tanks Location

Site Details

GW Velocity	~250 ft/yr
Vertical Treatment Interval	15'-27' bgs.
Injection Points	9
Soil Type	Coarse, Medium to Fine Sand with Clay at 27' bgs
Sensitive Receptors	Residences, Surface water bodies, Property Boundary

Contaminants of Concern

8 μg/L PCE and 130 ng/L Total PFAS, Primatily PFOS & PFHxS

Ever-changing Remediation Goals

- Fall 2018: 70ppt Total PFOS/PFOA USEPA Health Advisory Level
- August 2020: Michigan MCLs
- March 2023: Proposed
 USEPA MCLs

Summary

EPA is proposing a National Primary Drinking Water Regulation (NPDWR) to establish legally enforceable levels, called Maximum Contaminant Levels (MCLs), for six PFAS in drinking water. PFOA and PFOS as individual contaminants, and PFHxS, PFNA, PFBS, and HFPO-DA (commonly referred to as GenX Chemicals) as a PFAS mixture. EPA is also proposing health-based, non-enforceable Maximum Contaminant Level Goals (MCLGs) for these six PFAS.

Compound	Proposed MCLG	Proposed MCL (enforceable levels)
PFOA	Zero	4.0 parts per trillion (also expressed as ng/L)
PFOS	Zero	4.0 ppt
PFNA		
PFHxS	1.0 (unitless) Hazard Index	1.0 (unitless) Hazard Index
PFBS		
HFPO-DA (commonly referred to as GenX Chemicals)		

Source: https://www.michigan.gov/pfasresponse/drinking-water/mcl Source: https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas

Simple Plume Cut-Off Barrier

Modeling in the Design Process

• Key Factors:

- Target contaminant of concern
 - VOCs, PFAS, etc.
 - Compound Specific Isotherms
- Contaminant Mass Flux
- Non-target compounds present
- Competitive Sorption and Degradation (if applicable)

Model Considerations:

- Carbon Dose
- Vertical Variations
- Barrier Thickness
- Time

Design Verification Testing

- Subsurface investigation specific to application requirements
- Separate mobilization ahead of the principal application

Delineation for risk ≠ delineation for remediation

- Detailed stratigraphy, feasible flow rates, appropriate tooling, aquifer response to injection (clean water)
- Informs design refinement and placement optimization
- Injection Test, Soil Cores, High Resolution Sensing Tools, FluxTracer™

Pilot Test Layout

- 9 Direct-Push Injection Points
- Paired Wells UG & DG
- Bottom up DPT Injection using 3' retractable screens
- ~8500-gallons of CAC Solution
- Avg. injection pressure of 16 psi
- Avg. flow rate of 6.45 gpm

- Planned field steps to confirm and optimize CAC distribution
- Pre- and Post-Soil Cores
- Piezometers

Application Fieldwork

Placement Validation

- Conducted during application
- Has the injected CAC gone where we intended it to?
- Soil cores, temporary piezometers, carbon concentrations

Real-time adjustment to situations encountered

- Designer is frequently in the field
- Deep CSM familiarity alert to discrepancies
- Full project team involvement

CAC-Distribution Confirmation

CAC-Distribution Confirmation

Did the CAC Application change the Characteristics of the Site?

Pre-/Post-Injection Slug Test Results Relatively Unchanged

Analytical Results

Average Total PFAS Concentrations in Upgradient and Downgradient Well Pairs

Average PCE Concentrations in Upgradient and Downgradient Well Pairs

Average PFAS Concentrations in Upgradient and Downgradient Well Pairs

Years post application

Average Total PFHxS/PFOS Concentrations in Upgradient & Downgradient Wells Pairs

Years post application

Average PCE Concentrations in Upgradient and Downgradient Wells Pairs

Case Study #2

Case Study: Fairbanks International Airport

- PFAS detected onsite
- FIA responded immediately
- Properties connected to municipal water line

Maximum Combined PFOS/ PFOA Concentrations Below HAL (<65 ppt)

Over 65 ppt

PlumeStop Application

• Purpose:

- Treatment designed to address PFOS, PFOA, PFHpA, PFHxS, and PFNA
- Objectives
 - Inject PlumeStop to address contamination in vicinity of MW1902-20
 - Monitor PFAS levels in MW for minimum of one year
 - Extend barrier 2023

PlumeStop Pilot Study - Application

PlumeStop Application – Injection Controls

Injection Locations

Results

Baseline Sampling

- PFOS = 270 ng/L
- PFOA = 240 ng/L
- PFHxS = 530 ng/L
- PFHxA = 200 ng/L
- PFBS = 100 ng/L
- PFBA = 24 ng/L

June 2021 – Removal Rates

- **PFOS = 100%**
- **PFOA** = 100%
- **PFHxS = 100%**
- **PFHpA = 100%**
- PFNA = ND

Observed PFAS Compounds in D-MW1903-20 Concentrations shown in ng/L

Time in Years Post-PlumeStop Application

Case Study #3

Martha's Vineyard Airport Selects PlumeStop to Address PFAS

REGENE

Cost-Effective In Situ Approach Addresses PFAS Risk with No Greenhouse Gases or Hazardous Waste

Martha's Vineyard Airport Selects PlumeStop to Address PFAS

- Martha's Vineyard Airport is centrally located on an island off the coast of Massachusetts.
- AFFF leached into the underlying groundwater impacting it with PFAS and plume extends beyond airport property boundaries
- Private water wells supplying drinking water to residents at risk

GENE

Remedy Selection

Remediation Goal:

- Prevent further PFAS movement away from the site
- Prevent PFAS exposures to downgradient residents
- Achieve regulatory standard: 20 ppt sum of: PFOA, PFOS, PFHxS, PFNA, PFBS, PFDA
- 15+ year Design single application

Key factors in the selection included:

- Avoiding greenhouse gas emissions
- Avoiding PFAS hazardous waste disposal
- Cost

Application and Results

- PlumeStop applied in December 2022
- Currently in performance monitoring period
- Barrier designed to immobilize PFAS for decades, reducing potential exposure risk to nearby residents
- Plan to Expand barrier

PlumeStop PRB Application Details

Contaminants of concern	PFAS		
Treatment Zone Geology	Coarse sand, with some silt and clay		
Barrier length	60 linear feet		
Target treatment zone	30 to 40 feet bgs		
Injection configuration	24 pts, 5-feet spacing, two rows		
PlumeStop applied	9,200 pounds/10,044 gallons		

Upgradient Barrier: MA 6 PFAS

TT-25 5' Downgradient: PFAS 6

TT-25 5' downgradient

TT-26S 25' Downgradient PFAS 6

Summary

• CAC is an effective, in situ option to address PFAS Risk

- Nearly 40 sites to date
- Third-Party Evaluations
- Strict regulatory standards have been met
- Source treatment will further enhance effectiveness of barrier by reducing mass flux
- NO waste is generated using this in situ approach
- Treatment Expected to last for Decades

Questions?

Ryan E. Moore, CHMM

Senior District Manager and PFAS Program Manager rmoore@regenesis.com

219-286-4838

