

THE VERSATILITY OF ORGANOCLAY AND SURFACE-MODIFIED CLAY FOR REMEDIATION

Marat Goldenberg, PE CETCO - Mineral Technologies Inc.

Missouri Waste Coalition Conference 2023

Copyright[©] 2023 CETCO

PRESENTATION OVERVIEW

- **1**) Introduction to Surface Modified Clays (SMCs)
- 2) Organoclay Properties and Applications
- 3) **PFAS Background**
- 4) Introduction to Fluoro-Sorb
- 5) Summary of water/wastewater applications
- 6) **ISS Applications**
- 7) Reactive Core Mat (RCM) Applications
- 8) Injection Applications

MODIFIED CLAYS – VERSATILITY IN DEPLOYMENT

Source Zone Treatment In Situ Stabilization/Solidification

Passive Groundwater Permeable Reactive Barrier

Sediment Capping REACTIVE CORE MAT[®] (RCM)

Water Filtration

SODIUM BENTONITE CLAY

- Naturally-occurring mineral formed originally by natural weathering of volcanic ash when exposed to water
- Composed of at least 50% montmorillonite 2 tetrahedral sheets of silica sandwich a central sheet of alumina (a 2:1 clay) – sheets are referred to as "platelets"
- A water-swelling clay that can form stable colloidal suspensions
- Water and exchangeable cations like sodium occupy the interlayer space
- Thickness of interlayer space plus one layer is called the d-spacing
- Typical d-spacing is 10 20 Å or 1-2 nm

WHAT IS ORGANOCLAY?

Sodium Bentonite Clay

Organoclay is obtained by converting a hydrophilic clay to a hydrophobic clay using a surface modification agent through an ion-exchange reaction. Organoclay does not swell when hydrated.

Organoclay

No

Sodium Bentonite

Organoclay Saturated With Contaminants

Adsorption Mechanism

- Contaminant partitions to organoclay
- **Extragallery and intragallery** adsorption
- Primary driving forces are hydrophobic interactions between surface modification and contaminants.
- Secondary driving force hydrogen bonding with platelet edges have abundant hydroxyl groups.

ORGANOCLAY PROPERTIES AND APPLICATIONS

- Dry, granular material
- Bulk Density: 50 lb/ft³
- Specific Gravity: 1.75
- Contaminant Sorption Capacity:
 - > Oil: 0.5 1.0 g/g organoclay (field)
 - LNAPL, DNAPL: 2 4 g/g organoclay (lab)

Product	Grain Size	Application
SS-199	Fine - 20x200 mesh	Soil Stabilization
PM-199	Standard - 18x40 mesh	Permeable Reactive Barriers Sediment caps Filtration Media
PM-200	Large - 12x30 mesh	Filtration Media Sediment Caps

ADSORPTION OF COMMON CONTAMINANTS

- Organoclay is a highly effective adsorption media for contaminants with low water solubility
- Partition coefficient is proportional to octanol-water partition coefficient

Reactive Core Mat® (RCM)

Variety of Media Used in RCM:

Fluoro-Sorb adsorbent - PFAS

Organoclay for low soluble organic matter Activated carbon soluble organics and some metals Apatite minerals for heavy metals Organoclay MRM media for Hg and Arsenic Combinations of the above

Superfund Site, Portland, OR

Sediment Cap – Organic Bulk Deployment and RCM:

- NAPL from groundwater contaminating beach head and freshwater bay
- Gas releases carrying organic contaminants through water column and depositing on water surface
- A re-occurring sheen was developing on the surface of fresh water
- Sheen has completely dissipated in capped areas

PRE-REMEDIATION

POST-REMEDIATION

PFAS BACKGROUND

PFAS - Perfluoroalkyl & Polyfluoroalkyl Substances

- Thousands of PFAS were synthesized and manufactured for variety of uses
- Evolving recognition of which specific PFAS are contaminants of concern

Perfluorocarboxylic acids c4 F = F = F = FPerfluorobutanoic acid (PFBA) F = F = F = F = F

Perfluoropentanoic acid (PFPeA)

Perfluorohexanoic acid (PFHxA)

Perfluorononancanoic acid (PFNA)

Perfluorodecanoic acid (PFDA)

FLUORO-SORB[®] ADSORBENT FOR PFAS TREATMENT

- Proprietary surface-modified clay for the removal of PFAS from water or wastewater
- Commercially available since May 2019
 - Manufactured in ISO9001:2015 certified production plant in Aberdeen, Mississippi
 - Meets NSF/ANSI 61 Certification
- Partnerships with multiple universities for testing and engineering firms field piloting

FLUORO-SORB[®] ADSORPTION MECHANISM

- Surface-modified clay adsorbents are obtained by converting a sodium bentonite clay to an adsorption media using a modification agent that has high affinity for a variety of PFAS
- The intralayer space or d-spacing increases as the modification agent bonds with the clay.
- PFAS are removed from water or stabilized in soil by adsorption it is more energetically favorable for PFAS to partition into the adsorbent than remain in the water or soil.

WHAT IS SURFACE-MODIFIED CLAY?

- Positively charged centers of modification agent attract anionic PFAS
- Hydrophobic chains of modification attract fluorinated chain of PFAS
- Loading of the modification agent renders the clay non-swellable upon hydration

PFAS ADSORPTION BEHAVIOR

XRD shows the d-spacing increases as PFAS are adsorbed SMC = Surface-Modified Clay

SURFACE-MODIFIED CLAY (SMC) PFAS REMOVAL MECHANISM

16

COMPARATIVE ASSESSMENT

- PFAS contaminated groundwater from a firefighting area at a former airfield
- Batch adsorption experiments 40 mg FLUORO-SORB[®] adsorbent was mixed with 400 ml of contaminated groundwater for 168 hours and the supernatant analyzed for PFAS concentration

ONGOING PILOT RESULTS - OCTOBER 2021

Orange County Water District (2021). PFAS Phase 1 Pilot Scale Treatment Study Final Report. March 24, 2021 20

ISS FULL SCALE APPLICATION

- Fire fighting training area (FFTA) at a military site in Canada
- PFAS detected in soil and groundwater, with PFOS the main target of remediation
- Source zone treatment consisted of soil excavation (19,000 metric tons), with a portion
 of the excavated soil mixed with FLUORO-SORB[®] adsorbent to reduce PFAS leaching and
 backfilled into the excavation

Green = New FFTA footprint (Virgin backfill) Red = Soil for Destruction (PFOS > 0.54 mg/kg) Orange = Soil for Stabilization and Reuse (PFOS > 0.14 mg/kg and ≤0.54 mg/kg)

Simplified vertical slices of the treatment zone. Zones are highlighted based on remediation approach (red zones – incineration, orange zones – soil stabilization with FLUORO-SORB adsorbent. The green area represents virgin backfill necessary for construction of a new fire training area.

IN SITU SOIL STABILIZATION (ISS) TREATABILITY STUDY

- Former fire fighting training area at a military installation
- In situ soil stabilization chosen as the remediation option for PFAS-impacted soil
- Bench-scale laboratory test completed to evaluate currently available commercial products as fixants for stabilization of PFAS in soil
- Representative soil samples were collected from the site
 - Sandy loam, with 94% ash content and 6% organic matter content
 - Samples were composited, and PFAS in soil was measured

Procedure

- Composited soil (100 g) was mixed with 0.5% to 5% by weight of FLUORO-SORB[®] adsorbent and 200 mL of deionized water
- 2. Shaken for 120 hours and centrifuged to separate the liquid
- 3. Liquid analysed for PFAS concentrations

PFAS Name	Soil Concentration (μg/kg)	Compound Observed in Supernatent	
Perfluorobutanoic acid (PFBA)	<10	Y	
Perfluoropentanoic acid (PFPeA)	24.7	Y	
Perfluorohexanoic acid (PFHxA)	22	Y	
Perfluoroheptanoic acid (PFHpA)	<10	Y	
Perfluorooctanoic acid (PFOA)	32	Y	
Perfluorononanoic acid (PFNA)	15	Y	
Perfluorobutanesulfonic acid (PFBS)	<10	Y	
Perfluorohexanesulfonic acid(PFHxS)	80	Y	
Perfluoroheptanesulfonic acid PFHpS	<10	Y	
Perfluorooctanesulfonic acid (PFOS)	2933.3	Y	
Perfluorooctane Sulfonamide (FOSA)	223.3	N	
6:2 Fluorotelomer sulfonic acid	150	N	
8:2 Fluorotelomer sulfonic acid	220	N	

ISS LAB STUDY - RESULTS

PFAS	0.5% FLUORO-SORB Adsorbent	1% FLUORO-SORB Adsorbent	2% FLUORO-SORB Adsorbent	3% FLUORO-SORB Adsorbent	4% FLUORO-SORB Adsorbent	5% FLUORO-SORB Adsorbent
PFOS	99.8%	99.9%	100.0%	100.0%	100.0%	100.0%
PFHxA	85.6%	92.0%	92.0%	94.2%	94.1%	95.8%
PFPeA	82.5%	88.8%	88.5%	91.0%	90.7%	92.9%
PFHxS	99.1%	99.7%	99.9%	99.9%	99.9%	99.9%
PFOA	90.0%	92.8%	92.8%	94.8%	93.9%	96.1%
PFBA	76.0%	84.0%	84.6%	86.9%	86.9%	89.1%
PFHpA	60.0%	74.5%	72.7%	79.1%	78.2%	83.6%
PFNA	99.0%	99.0%	99.0%	99.0%	99.0%	99.0%
PFHpS	98.7%	98.7%	98.7%	98.7%	98.7%	98.7%
PFBS	97.8%	97.8%	97.8%	97.8%	97.8%	97.8%

ISS TREATABILITY STUDY - RESULTS

	Reduction in Leaching				
	PFOS	5	Average		
Fixant Weight %	FLUORO-SORB® Adsorbent	AIOH/GAC Fixant	FLUORO-SORB® Adsorbent	AIOH/GAC Fixant	
0.5%	99.8%	54.8%	88.9%	46.3%	
1%	99.9%	84.0%	92.7%	67.8%	
2%	100.0%	94.2%	92.6%	80.2%	
3%	100.0%	96.1%	94.1%	84.0%	
4%	100.0%	98.3%	93.9%	89.0%	
5%	100.0%	98.2%	95.3%	89.8%	

<u>Conclusion</u>: For PFOS, the primary PFAS of concern at the site, leaching was reduced by 99.8% for the 0.5% by weight FLUORO-SORB adsorbent dose. In comparison, the 0.5% AIOH/GAC fixant reduced PFOS leaching by only 54.8%. It took 4-5% of the AIOH/GAC fixant to achieve the same reduction in leaching as 0.5-1% FLUORO-SORB adsorbent for the average of all PFAS tested.

PFAS SOLIDIFICATION/STABILIZATION BENCH AND FIELD PILOT TESTING

Bench Testing

	Leach Fluid: DI Water at pH = 7.9					
Sample	Control 1 Soil/GW	Control 2 Soil/GW Cement	AIOH/ Carbon Blend	AIOH/Carbon Blend w/ Cement	FLUORO- SORB	FLUORO- SORB with Cement
PFAS Sum (mg/L)	228	1.17	0.75	245	0.30	0.04

Adapted from IN-SITU STABILIZATION OF PFAS IN GROUNDWATER, Peter Storch, Proceedings of Cleanup 2017 Melbourne, Victoria

Field Pilot Testing

- Repeated bench testing, FLUORO-SORB[®] adsorbent selected for field pilot
- 5% FLUORO-SORB® adsorbent, 10% Portland Cement
- Installed in 2018
- Annual SPLP testing to verify long-term performance

SOURCE ZONE TREATMENT & STABILIZATION RESEARCH AT THE UNIVERSITY OF TEXAS

Pending Publication by Prof. Chadi El Mohtar and Antonios Alvertos, 2019

Remediated Groundwater

Permeable Reactive Barrier

26

CHARACTERIZATION OF IN-SITU SOIL

US EPA LEAF METHOD 1313 & 1316 IMPACT OF FLUORO-SORB® 100 ADSORBENT & ORDINARY PORTLAND CEMENT

28

UNIVERSITY OF TEXAS CONCLUSIONS USE OF FLUORO-SORB® ADSORBENT FOR SOURCE ZONE TREATMENT

- **1.** OPC alone was not effective in stabilizing these same constituents
- 2. Mix III-F (5% OPC 5% FL) gave the optimal performance in terms of reducing total available PFAS for leaching (Method 1313) and the lowest mass transfer and transfer rate (Method 1315)

FLUORO-SORB[®] REACTIVE CORE MAT

INJECTION OF FLUORO-SORB

- CETCO has partnered with AST Environmental – For Insitu injection of Fluoro-Sorb for PRBs and Source Control
- Pilot Completed in 2022
- Several projects in the planning stage

FLUORO-SORB® ADSORBENT - PILOT-SCALE INJECTION

CONCLUSIONS

Remediation with Organoclay and Surface-Modified Clay

- High adsorption capacity for a variety of contaminants
- Fast adsorption kinetics
- Resistant to competitive adsorption by co-contaminants and water constituents
- Versatility in deployment

Questions?

Marat Goldenberg, PE marat@vadoseRT.com

cetco@mineralstech.com | cetco.com

The MTI Logo®, Fluoro-sorb®, Reactive Core Mat®, and CETCO® are registered trademarks of Minerals Technologies Inc. or its subsidiaries